Torque Problem Types

A. Torque Balance – See Saw

Total Torque = 0 \rightarrow \text{clockwise torques = counterclockwise torques} \rightarrow \tau_{ccw} = \tau_{cw}

Where must a 50 N weight be placed to balance a 30 N weight located 2.0 m from the pivot point (fulcrum)?

Where must a 50 N weight be placed to balance a 30 N weight located 2.0 m from the pivot point (fulcrum)?

\tau_{ccw} = \tau_{cw}

General Relation

F_A \cdot r_A = F_B \cdot r_B

Specific Formula

Substitute

(50 \text{ N})(x) = (30 \text{ N})(2.0 \text{ m})

Solve

50x = 60

x = 1.2 \text{ m}

B. Bridge Question

Find the force of each support holding up a bridge, \(F_A\) and \(F_B\).

\[F_A = 8000 \text{ N up} \]

\[F_B = \tau_B / r_B = 5000 \text{ up} \]

\[F_{\text{car}} = 5000 \text{ down} \]

\[F_{\text{br}} = 8000 \text{ down} \]

General Strategy / Steps

1. Set the pivot point to one of the supports, \(A\)

 This will make the torque produced by \(F_A\) to be zero because the lever arm distance will be zero.

2. Calculate the torques for the known objects (car and bridge)

3. Solve for torque of \(B\), \(\tau_B\), knowing that torques must be balanced.

4. Solve for force of \(B\), \(F_B\), using torque

5. Solve for force of \(A\), \(F_A\), knowing that the vertical forces must be balanced

\[F_{\text{up}} = F_{\text{down}} \]

\[F_A + F_B = F_{\text{car}} + F_{\text{br}} \]

\[F_A = F_{\text{car}} + F_{\text{br}} - F_B \]

Table

<table>
<thead>
<tr>
<th>Object</th>
<th>Force / N</th>
<th>Lever Arm / m (from B)</th>
<th>Torque / N m</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>(\odot F_A = 8000 \text{ up})</td>
<td>(\odot r = 0)</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>(\odot F_B = \tau_B / r_B = 5000 \text{ up})</td>
<td>(25+15+10) = 50</td>
<td>25 000 ccw.</td>
</tr>
<tr>
<td>Car</td>
<td>(F_{\text{car}} = 5000 \text{ down})</td>
<td>10</td>
<td>(\odot \tau = F \cdot r = -50 000 \text{ cw})</td>
</tr>
<tr>
<td>Bridge</td>
<td>(F_{\text{br}} = 8000 \text{ down})</td>
<td>(\text{com} = 25)</td>
<td>(\odot \tau = F \cdot r = -200 000 \text{ cw})</td>
</tr>
<tr>
<td>Net</td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>
C. **EQUILIBRANT FORCE**

Determine the magnitude (value) and position of the force that is needed to bring equilibrium to a system.

Similar to Bridge Questions
1. Find the force needed, \(F_x \), to produce a net force of zero. \(F_{up} = F_{down} \)
2. Set a pivot point (anywhere, but keep it in place)
3. Calculate the known torques
4. Find the torque of X, using the total torque of zero. \(\tau_{cw} = \tau_{ccw} \)
5. Find the position, \(x \) of that force using torque ex.

![Diagram of forces and torques]

### Object	Force / N	Lever Arm / m (from B)	Torque / N m
A	−50	0	0
B	−40	50	③ −2000 cw
C	+120	65	③ +7800 ccw
X	① −30	\(x \)	④ \(30x = -5800 \) cw
	\(x = 193 \)		

Net | 0 | 0 | 0

\[r_{\perp} = l \sin \theta \]

D. **SIGN / CRANE QUESTIONS**

Find the tension \(T \) on a wire or the weight \(F \) of an object that is hanging from a horizontal bar

* The wire is at an angle \(\theta \).

The lever arm is always the perpendicular line from the force toward the pivot point.

→ You must use trigonometry to determine the lever arm \(r \), using the angle \(\theta \) and the distance \(l \) from the wall (pivot point) where the wire is attached to the horizontal bar.

\[\sin \theta = \frac{opp}{hyp} \]

\[\sin \theta = \frac{r_{\perp}}{l} \]

\[r_{\perp} = l \sin \theta \]
E. Ladder Questions

Find the lever arm and torque of a painter on a ladder that is leaning against a wall.

Find the force of friction between the floor and the ladder or the wall and the ladder.

Like the tension on the wire in sign/crane questions, the ladder is at an angle to a surface and the lever arm must be calculated using trigonometry.

In general, set the pivot point where the ladder touches the ground.

<table>
<thead>
<tr>
<th>Horizontal Forces</th>
<th>Vertical Forces</th>
<th>Torques</th>
<th>Lever Arm (base = pivot)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F_{left} = F_{right}$</td>
<td>$F_{up} = F_{down}$</td>
<td>$\tau_{cw} = \tau_{cw}$</td>
<td>wall $r = l \sin \theta$</td>
</tr>
<tr>
<td>$F_{wall} = F_f$</td>
<td>$F_N = F_g\text{Ladder} + F_g\text{Painter}$</td>
<td>$\tau_{wall} = \tau_{\text{Ladder}} + \tau_{\text{Painter}}$</td>
<td>painter $r = l \cos \theta$</td>
</tr>
<tr>
<td>$F_W = F_{Gx}$</td>
<td>$F_{Gy} = mg + Mg$</td>
<td></td>
<td>ladder $r = l_{com} \cos \theta$</td>
</tr>
</tbody>
</table>